Nature子刊:石墨烯氣凝膠的終極光熱效應

2020-12-03 材料分析與應用

本文要點:

證明石墨烯氣凝膠的最終光熱聲(PTA)效率,取決於它們的特定熱和光學性質,可以通過降低其質量密度來實驗性地實現。

成果簡介

在無源光聲器件中產生,放大,混合和調製聲音而沒有諧波失真的能力將徹底改變聲學領域。與傳統揚聲器一樣,光熱聲(PTA)效應允許將光轉換為聲音,而無需任何大量的機電移動部件和電連接。而且,PTA器件可以與標準矽互補金屬氧化物半導體(CMOS)製造技術集成。在這裡,我們證明了石墨烯氣凝膠的最終PTA效率,取決於它們的特定熱和光學性質,可以通過降低其質量密度來實驗性地實現。此外,我們說明氣凝膠在整個可聽範圍內表現為全向源點,沒有諧波失真。

圖文導讀

圖1、石墨烯氣凝膠中的光熱效應

圖2、石墨烯氣凝膠中密度依賴性PTA頻率響應。

圖3、石墨烯氣凝膠中PTA聲發射的諧波分析。

圖4、石墨烯氣凝膠揚聲器中的光熱聲方向性。

小結

總之,石墨烯氣凝膠可用作PTA揚聲器,具有全向發射並且在可聽範圍內無諧波失真。我們證明了這種揚聲器的理論限制效率可以通過調整它們的質量密度來實現。因此,石墨烯氣凝膠揚聲器可以提供商用機電耳機和一般高保真揚聲器的有效替代方案,只要照明光點足夠大。此外,我們相信PTA揚聲器可以為新型光聲傳感設備和計量應用鋪平道路。

文獻:

Ultimate Photo-Thermo-Acoustic Efficiency of Graphene Aerogels

相關焦點

  • 走進石墨烯小世界之石墨烯氣凝膠
    但是,由於石墨烯片層間強的範德華力和π-π鍵作用力,使其容易發生不可逆堆疊和團聚,嚴重降低石墨烯本身的性質和有效面積,從而限制了其在某些方面的應用,而將石墨烯片作為基本的構築單元,通過鍵接連接在一起,構建三維宏觀體—石墨烯氣凝膠,是解決石墨烯片層堆疊問題的有效方法之一。
  • 石墨烯氣凝膠獲得*輕材料金氏世界紀錄
    氣凝膠是一種用途廣泛的物質,是世界上密度最小的固體,密度僅為3千克每立方米。這種海綿狀的物體也是絕佳的熱與光學絕緣體,據了解,近年來利用3D印表機就可以製造出這種凝膠。在各種氣凝膠中,石墨烯氣凝膠是關注度最高的一種,因為它可以應用在電子部件的電池和觸媒中。     3D列印石墨烯氣凝膠的正方形樣品非常輕便,可以掛在麥芒上而不會彎曲。
  • 3D列印新工藝 石墨烯氣凝膠更精細
    好消息是,維吉尼亞理工大學的研究人員們,已經展示了他們新開發的一種 3D 列印石墨烯氣凝膠方案,且其解析度遠高於此前的水準。通常情況下,石墨烯只需要以「單層厚度的碳原子片」的形式出現。儘管其在某些情況下得到了應用,但距離實際投入還很遙遠。
  • 常溫發泡法連續製備石墨烯氣凝膠及其AI應用
    團隊與浙江大學體育系彭玉鑫研究員(共同通訊)合作,開發了超靈敏的石墨烯氣凝膠微陣列觸覺傳感器,通過人工智慧算法,石墨烯氣凝膠手指傳感器展現了超出人手的觸覺靈敏度。溶致塑化發泡石墨烯氣凝膠的製備及機理。(A)溶致塑化發泡的過程。(B)氧化石墨烯中水分子的插入實現片層塑化。(C)隨著氣泡的成核與生長氧化石墨烯片緩慢的發生塑化滑移形變,直至穩定。(D)形成緊密搭接的雙曲面石墨烯氣凝膠。(E)石墨烯氣凝膠的掃描形貌圖及氣泡結構模型圖。
  • 科學家研發世界最輕的3D列印結構——石墨烯氣凝膠
    據了解,由法羅大學、堪薩斯州立大學和中國蘭州大學的三位研究員開發的3D列印石墨烯氣凝膠被金氏世界紀錄評為「最密集的3D列印結構」。3D列印石墨烯氣凝膠重量極輕,每立方釐米僅重0.5毫克,放在棉花或花瓣頂都可以,可以製造出就有複雜微觀結構的超輕石墨烯氣凝膠。
  • 北京化工大學:基於3D石墨烯氣凝膠快速響應的壓阻傳感器
    石墨烯氣凝膠通常通過氧化石墨烯的還原與冷凍乾燥製備的但是,氧化石墨烯在製備過程中容易發生團聚,使得氣凝膠孔隙結構不穩定,在較大形變使用時容易發生坍塌,限制其在壓阻傳感器領域的應用。目前,通過控制石墨烯氣凝膠的孔隙結構、對石墨烯進行化學改性、引入納米材料等多種方法來提高石墨烯氣凝膠的傳感性能。此外,研究表明,不同納米材料的引入可協同提高石墨烯氣凝膠的感應性能和力學性能。因此,製備具有良好力學性能和傳感性能的石墨烯氣凝膠傳感器仍然是一個挑戰。
  • 超輕型雙網的組裝石墨烯氣凝膠及其在選擇性吸油中的應用
    、纖維素、木質素等添加劑,通常可以得到內部結構發達的高性能石墨烯氣凝膠,這不僅增加了成本,而且使製備過程複雜化。因此,以一種可行的方法來裁剪原始石墨烯氣凝膠的內部結構,以獲得高性能,對實際應用具有重要意義。
  • 復旦等製備出新型碳納米管/石墨烯氣凝膠!
    導讀:本文通過一種簡便的原位水熱法和冷凍乾燥方法,開發製備出一種新型的碳納米管/還原型氧化石墨烯氣凝膠吸波材料。該氣凝膠具有極低的密度,並在18–26.5 GHz頻率範圍內實現了極強的介電損耗能力。強吸收、寬吸收頻帶,輕薄的性能使得CNT/石墨烯氣凝膠在電磁波吸收材料中具有很好的應用前景。近年來,由於電子行業及無線電通信技術的飛速發展,電磁輻射對人體健康和環境的影響比以往增加了很多。為了減少電磁汙染,電磁波吸收材料受到越來越多的關注,這種材料可以通過它們的固有的磁性和介電損耗去衰減電磁能量將其轉化為熱能。
  • Interfaces 青島科大張建明教授團隊在規模化製備石墨烯氣凝膠取得重要進展
    目前,石墨烯氣凝膠的一個顯著缺點是柔韌性較差,彎曲時易破裂,嚴重製約了該材料的應用領域。近期,青島科技大學高分子學院張建明教授團隊基於氣泡模板法,將天然膠乳粒子成功地複合到了氣凝膠的孔壁中,形成了仿玫瑰花表面的石墨烯孔壁結構,顯著增加了材料的韌性,同時維持了超低的密度(4.6 mg cm-3)。
  • 北化工:3D石墨烯氣凝膠,用於壓阻傳感器的1D / 2D納米材料
    本文要點:一種新型的納米纖維增強石墨烯氣凝膠成果簡介 基於石墨烯的氣凝膠作為壓阻傳感器具有高的孔隙率然而,同時具有良好的機械性能和優異的感測性能的石墨烯氣凝膠傳感器的製造仍然是一個挑戰。本文,北京化工大學材料科學與工程學院潘凱研究員團隊在《Adv. Funct.
  • 北京化工大學潘凱《AFM》:新型具有3D互連的分層微觀結構的納米纖維增強石墨烯氣凝膠
    氣凝膠。石墨烯氣凝膠通常通過氧化石墨烯的還原與冷凍乾燥製備的。但是,氧化石墨烯在製備過程中容易發生團聚,使得氣凝膠孔隙結構不穩定,在較大形變使用時容易發生坍塌,限制其在壓阻傳感器領域的應用。目前,通過控制石墨烯氣凝膠的孔隙結構、對石墨烯進行化學改性、引入納米材料等多種方法來提高石墨烯氣凝膠的傳感性能。
  • 查默斯理工大學研究人員利用石墨烯氣凝膠 或有利於推進鋰硫電池的...
    研究人員的想法非常新穎,利用一種由還原氧化石墨烯製成的多孔、類似海綿的氣凝膠,當作電池的獨立電極,從而更好地利用硫、提高利用率。傳統電池由四部分組成,首先,有兩個覆蓋活性物質的支撐電極,即陽極和陰極;它們之間是電解質,通常是液體,可讓離子來迴轉移;第四個部分是分離器,作為物理屏障,可防止兩個電極接觸的同時,允許離子轉移。
  • 暨南大學:石墨烯氣凝膠微電機,用於主動運輸和微裝配
    本文要點:尺寸可控制的還原氧化石墨烯氣凝膠微球(RGOAM),用作微電機成果簡介 無燃料光碟機動微電機因其具有可逆、無創、遠程操作等優點而受到越來越多的關注。然而,由於水在環境水體中的流動性,運動速度很小,這是一個具有挑戰性的瓶頸。
  • 吉林大學:通過不飽和水蒸氣還原形成任意形狀的氧化石墨烯氣凝膠
    探索用於製造低密度和高純度以滿足各種應用的石墨烯氣凝膠的簡便,經濟和環保的方法仍然是一個挑戰。a)從GO水性懸浮液開始的rGO氣凝膠的製備過程示意圖;bd)各種形狀的rGO-6-150氣凝膠的數字圖像:「大象」,「天鵝」和「劍龍」;e)GO-6氣凝膠和rGO-6-150氣凝膠的拉曼光譜。圖2。
  • 石墨烯氣凝膠應用於高體積比能量鋰硫電池新進展—新聞—科學網
    中科院大連化物所
  • 北化:Na3V2O2(PO4)2F石墨烯氣凝膠用於鈉離子電池
    Interfaces》期刊發表名為「Freestanding Na3V2O2(PO4)2F/Graphene Aerogels as High-Performance Cathodes of Sodium-Ion Full Batteries」的論文,研究提出通過採用簡單的水熱自組裝以及冷凍乾燥製備Na3V2O2(PO4)2F/石墨烯氣凝膠(NVPF/GA)直接用作自支撐鈉電正極材料的方法
  • 陶瓷氣凝膠或成航空航天新材料
    近日,哈爾濱工業大學、蘭州大學、美國加州大學洛杉磯分校、加州大學伯克利分校等高校研究人員,共同研究合成了米層狀結構的雙曲線結構陶瓷氣凝膠,通過結構設計實現了「負特性」的超材料,該材料可以極大增強傳統陶瓷氣凝膠材料的各項性能,甚至賦予其新的特性。相關研究結果近日發表於《科學》雜誌。 該研究成果基於5年的石墨烯氣凝膠基礎研究,並歷時2年完成。
  • Interfaces》:石墨烯氣凝膠微電機,用於主動運輸和微裝配
    尺寸可控制的還原氧化石墨烯氣凝膠微球(RGOAM),用作微電機無燃料光碟機動微電機因其具有可逆、無創、遠程操作等優點而受到越來越多的關注
  • 《納米快報》高介孔碳/硫石墨烯氣凝膠,穩定鋰硫電池約束基質
    他們報告了一種穩固的3D石墨烯包裹,氮摻雜,高介孔碳/硫(G-NHMC/S)分層氣凝膠的製作工藝,該氣凝膠是一種高度穩定的Li-S電池的有效聚硫化物限制基質。NHMC的豐富極性位點將LiPSn牢固地錨定在基質表面上。多孔NHMC為容納硫和緩衝其體積膨脹提供了充足的空間。此外,包裹在NHMC/S上的石墨烯不僅在物理上阻礙了LiPSn穿梭,而且使分離的NHMC/S相互連接,從而提高了電子傳輸速率。
  • 清華《Nature》子刊:超強陶瓷海綿!性能太厲害了
    近年來,各種海綿狀材料,包括碳納米管氣凝膠、納米纖維氣凝膠和石墨烯氣凝膠等由於它們的高壓縮性和彈性受到廣泛關注。其中,陶瓷海綿材料由於其輕質、大比表面積、低導熱性、優異化學和熱穩定性吸引了更多的興趣。論文連結:https://www.nature.com/articles/s41467-020-17533-6