(圖片來自網絡)
2015年10月23日訊 /生物谷BIOON/ --近日,來自美國和德國的科學家們在國際學術期刊Nature上發表了一項最新研究進展,他們通過對慢性淋巴細胞白血病病人樣本進行全外顯子測序分析,發現了一些可能發生反覆突變的癌症驅動基因,這對於了解腫瘤形成過程以及癌細胞進化過程具有重要意義。
究竟哪個基因突變會驅動腫瘤形成以及在疾病發展和治療過程中癌細胞如何進化是癌症生物學研究中的兩個關鍵問題,而腫瘤學家們也在尋找這兩個問題的答案上孜孜不倦地努力著。
在這項研究中,研究人員對538名慢性淋巴細胞白血病病人的樣本及與其相對應的胚系DNA樣本進行了全外顯子測序比對,發現了44個會發生反覆突變的基因以及11個反覆發生拷貝數變異的基因。這些突變基因中包括一些之前未報導過但可能驅動癌症發生的新基因(RPS15,IKZF3),同時還發現RNA加工和轉出過程,MYC活性以及MAPK信號都是參與CLL的重要途徑。
研究人員對這一大數據集進行進一步的克隆形成能力分析,重新建立了癌症驅動因素之間的時間聯繫,在對59名病人治療前以及復發後的癌細胞樣本進行直接對比之後,研究人員發現癌細胞出現了高頻的克隆進化。
這項研究表明,對信息比較完整的臨床樣本進行測序,獲得大量測序數據,能夠幫助科學家們發現與癌症有關的新基因,了解不同癌症驅動因素之間的網絡關聯,以及預測基因突變對疾病復發和臨床結果產生的影響。對於深入探究癌症發生原因以及治療過程中出現的癌細胞進化過程具有重要意義。(生物谷Bioon.com)
Mutations driving CLL and their evolution in progression and relapse
Dan A. Landau,Eugen Tausch,Amaro N. Taylor-Weiner,Chip Stewart,Johannes G. Reiter,Jasmin Bahlo,Sandra Kluth,Ivana Bozic,Mike Lawrence,Sebastian B?ttcher,Scott L. Carter,Kristian Cibulskis,Daniel Mertens,Carrie L. Sougnez,Mara Rosenberg,Julian M. Hess,Jennifer Edelmann,Sabrina Kless,Michael Kneba,Matthias Ritgen,Anna Fink,Kirsten Fischer,Stacey Gabriel,Eric S. Lander,Martin A. Nowak,Hartmut D?hner,Michael Hallek,Donna Neuberg,Gad Getz,Stephan Stilgenbauer& Catherine J. Wu
Which genetic alterations drive tumorigenesis and how they evolve over the course of disease and therapy are central questions in cancer biology. Here we identify 44 recurrently mutated genes and 11 recurrent somatic copy number variations through whole-exome sequencing of 538 chronic lymphocytic leukaemia (CLL) and matched germline DNA samples, 278 of which were collected in a prospective clinical trial. These include previously unrecognized putative cancer drivers (RPS15, IKZF3), and collectively identify RNA processing and export, MYC activity, and MAPK signalling as central pathways involved in CLL. Clonality analysis of this large data set further enabled reconstruction of temporal relationships between driver events. Direct comparison between matched pre-treatment and relapse samples from 59 patients demonstrated highly frequent clonal evolution. Thus, large sequencing data sets of clinically informative samples enable the discovery of novel genes associated with cancer, the network of relationships between the driver events, and their impact on disease relapse and clinical outcome.