洛必達法則的歷史發展及其應用

2021-01-08 土豆談天下

正文:歲月如歌,唱不盡易失的年華。昨日還是為了高考拼搏的高三生,而今日成為了獨擋一面的大學生了。來到大學有一個學期了,《高等數學》可謂是離生活最近的一個學科,它的魅力讓我們共同領略。

洛必達法則,作為其中一篇不起眼的章節卻起著大大的作用,應用在生活的方方面面。

說起洛必達法則,就必須提一下洛必達這個人1661年洛必達出生於法國的貴族家庭。1704年2月2日卒於巴黎。他曾受襲侯爵銜,並在軍隊中擔任騎兵軍官,後來因為視力不佳而退出軍隊,轉向學術方面加以研究。

他早年就顯露出數學才能,在他15歲時就解出帕斯卡的擺線難題,以後又解出約翰·伯努利向歐洲挑戰「最速降曲線問題」。稍後他放棄了炮兵的職務,投入更多的時間在數學上,在瑞士數學家伯努利的門下學習微積分,並成為法國新解析的主要成員。 洛必達的《無限小分析》(1696)一書是微積分學方面最早的教科書,在十八世紀時為一模範著作,書中創造一種算法(洛必達法則),用以尋找滿足一定條件的兩函數之商的極限,洛必達於前言中向萊布尼茲和伯努利致謝,特別是約翰·伯努利。洛必達逝世之後,伯努利發表聲明該法則及許多的其它發現該歸功於他。這就是洛必達及其法則的故事。

洛必達法則在我們的生活中有這非常廣泛的應用。洛必達法則是在一定條件下通過分子分母分別求導再求極限來確定未定式值的方法。眾所周知,兩個無窮小之比或兩個無窮大之比的極限可能存在,也可能不存在。因此,求這類極限時往往需要適當的變形,轉化成可利用極限運算法則或重要極限的形式進行計算,洛必達法則便是應用於這類極限計算的通用方法。

相信上過高中的都有被導數支配的恐懼,洛必達法則就是解決導數極限問題的重要方法,有了這個法則就如同如虎添翼般。高中做到頭疼的倒數題也能迎刃而解。接著說說公式。洛必達法則的計算公式主要有三種類型:零比零型,無窮比無窮型和其他不定式。

零比零型:

無窮比無窮型:

其他類型:

洛必達法則可將複雜的極限化難為簡,解決一些複雜的題型,當我們遇事不決時:洛它!

參考文獻:百度百科

《高等數學》

《經濟數學》張忠誠主編

相關焦點

  • 洛必達法則在高中數學中的應用
    洛必達於1661年出生於法國的貴族家庭,他是數學家,偉大的數學思想傳播者,洛必達法則是他的一重大代表作,我們研究函數提供了新的方向.在介紹本文主要內容之前,大家先看一道題目:為了回答上面這個問題,我們得給出洛必達法則:「洛必達法則」是高等數學中的一個重要定理,用分離參數法(避免分類討論)解決成立、或恆成立命題時,經常需要求在區間端點處的函數(最)值,若出現0/0型或無窮大/無窮大型可以考慮使用洛必達法則。
  • 洛必達用金錢買來的法則-洛必達法則
    最近在上高等數學課時,臺上的老師看我們在臺下有幾個同學聽的一臉懵比,當時正好講到這個用來求極限的洛必達法則,為了讓數學課不那麼枯燥乏味,老師便引出了這個看起來很重要的高數定則洛必達法則背後的故事。學習微積分的同學不可能不知道一個法則:洛必達法則。
  • 如何理解洛必達法則?
    為了知行合一,洛必達從數學家伯努利手中重金買下了一個智慧財產權,伯努利收穫了金錢,也付出了後悔。這次交易的內容就是我們今天要講的,以洛必達的名字命名的洛必達法則。洛必達法則(l'Hôpital's rule)是利用導數來計算具有不定型的極限的方法。這
  • 洛必達法則
    (過程省略,感興趣的童鞋可自行研究)也就是說,當x=0時g(x)取得最大值.但是,這是顯然不可能的,因為x=0時函數無意義.我們只能研究當x無限趨向於0時,g(x)的逼近值.現在輪到「洛必達法則」上場了.
  • 求極限的方法-洛必達法則
    今天繼續介紹求極限的第7種方法(一共8種方法)洛必達法則(l'Hôpital's rule)是在一定條件下通過分子分母分別求導再求極限來確定未定式極限的方法
  • 洛必達法則背後的故事
    我們在學習高等數學求極限的內容時,洛必達法則幾乎是必學的。但是大家可能不知道,洛必達法則的提出者並不是洛必達本人,而是他的老師伯努利。
  • 洛必達法則是買來的 你知道麼?
    我相信在大學裡學過數學的人,洛必達法則你一定不陌生。我相信大多人都是聽過,不會,也不知道是什麼。但是我覺得大多數人肯定這樣認為,洛必達法則就是洛必達寫的。其實並不是,因為洛必達法則,是洛必達買來的。洛必達本人出身貴族,數學水平不是很高。
  • 「洛必達法則」居然是買來的!
    主人公洛必達出生於法國貴族家庭,家境優渥,自幼酷愛數學,並展現出了過人天賦。後來,洛必達拜瑞士數學大師約翰.伯努利為師,成為其座下弟子。值得一提的是洛必達為此所支付的薪酬是伯努利工資的兩倍。後來洛必達找到他:「親愛的老師啊,你看你家裡這麼窮,不如把你的文章賣一份給我,你也賺點錢花,我也落得個美名,如何?」伯努利欣然接受:「好啊好啊!
  • (買來的公式)「洛必達法則」 失效篇
    約翰.伯努利洛必達【多講幾句】:其實,洛必達這個人還是不錯的。洛必達是法國中世紀的王公貴族,他喜歡並且酷愛數學,後拜伯努利為師學習數學。但洛必達法則並非洛必達本人研究。實際上,洛必達法則是洛必達的老師伯努利的學術論文,由於當時伯努利境遇困頓,生活困難,而學生洛必達又是王公貴族,洛必達表示願意用財物換取伯努利的學術論文,伯努利也欣然接受。此篇論文即為影響數學界的洛必達法則。
  • 洛必達的小秘密
    這次故事的主角是洛必達。作為一個沉迷學(chi)習(ji)的優秀大學生,那必須對這位對數學界做出傑出貢獻的學者有所了解。比如,我知道有洛必達法則、洛必達法則,和,嗯,洛必達法則。(就知道一個洛必達法則,還不會用,你可他媽快閉嘴吧)
  • 你要的洛必達法則
    這使我們想到「洛必達」法則.首先我們要了解這個法則的使用條件.當我們遇到除式形如「零比零」、或者「無窮比無窮」、或者「零乘以無窮」的時候,可以採用洛必達法則求出它的極限值.請注意,「零乘以零」,「無窮乘以無窮」的形式,不用洛必達法則.
  • 洛必達法則在高考中到底能不能用?
    以目前的高中教材知識是沒有辦法證明洛必達法則的。也就是說,洛必達法則對於高中生來說,超綱了。那麼超綱的知識,如果應用到高考中就應該不得分了。而事實上並非如此。首先我們說,能在考場上有時間做導數,這道題的學生並不太多。就算是有思路,按照標準答案給出的解題方法。
  • 微積分之極限洛必達
    數學極限內容中,有個鼎鼎大名的洛必達法則,無數理科生對它愛不釋手,但是畢竟這是大學的知識,校內考試是不能用的。不過留考這樣不需要過程的考試,用它在合適不過了。廢話不多說,直接上題當我們不知道洛必達法則的時候,拿到這道題第一反應就是定義法,利用函數的連續性這一思想,很容易想到要把這個分式變成在零處可以微分的形式。
  • 老師上課必講的那些科普小段子,洛必達法則、苯環、泊松亮斑
    數學:洛必達法則洛必達法則在很多學生眼裡是個神秘的技巧,很多班裡的「數學王子」,在做題的時候都很喜歡用這個技巧,尤其是前面的填空和選擇,用這個技巧可以節省很多時間。不過洛必達法則不是每個學校都會教,一般只有頂尖高中的數學老師會講,並且不會當成主要技巧。
  • 考研數學:29.洛必達法則【數1,數2,數3通用】
    考研數學:29.洛必達法則【數1,數2,數3通用】 2020-12-25 20:48 來源:考研學霸貓
  • 2016高考數學壓軸題 洛必達法則巧解
    2016高考數學壓軸題 洛必達法則巧解 2016-03-28 14:13 來源:新東方網編輯整理 作者:
  • 第16講:《柯西中值定理與洛必達法則》內容小結、課件與典型例題與...
    但是如果是用柯西中值定理的結論來推導、驗證的某些結論,則無法使用羅爾定理來替換,比如洛必達法則結論的推導.  (3) 柯西中值定理也可以用來驗證不等式. 可以參見課件中的練習.  三、洛必達法則及其應用條件  1、洛必達法則適用的極限類型  無窮小比上無窮小,或無窮大比上無窮大的未定型,或者可以轉換為這兩種類型極限的計算問題.
  • 微分中值定理、洛必達法則、泰勒公式以及函數的單調性和凹凸性
    大家好,我是專升本數學學霸,這次來談論微分中值定理、洛必達法則、泰勒公式和數的單調性和凹凸性這些內容。那你知道微分中值定理、洛必達法則、泰勒公式這些內容呢?沒關係!學霸來幫你來了。二、洛必達法則定理:(1)當 x→a時,函數f(x)及F(x)都趨近於零;(2)在點a的謀去心領域內,f'(x)及F'(x)都存在且F'(x)≠0; (3) 存在(或為無窮大)。
  • 《高等數學》應知應會之導數微分及其應用知識點總結與常用基本公式列表
    內容涵蓋:(1) 一元函數導數定義、性質及應用(求導、判斷導數存在性、求極限)(2) 一元函數求導運算法則(四則運算法則、複合、反函數求導法則、對數求導法、隱函數、參數方程、極坐標方程求導)(3) 高階導數及其計算性質與方法(4) 微分及其應用(
  • 數學分析原理【知識點整理】【微分的連續性、洛必達、高階導數、泰勒定理、向量函數的微分】
    L'Hospital's Rule [洛必達法則]這是個非常常用的定理,但本書上證明過於複雜(考慮了很多邊緣條件),所以不採用這裡的證明,而是從 wiki 摘錄過來。Theorem [洛必達法則] (5.13)Suppose