體內鹼基編輯可挽救小鼠的Hutchinson-Gilford早衰症候群
作者:
小柯機器人發布時間:2021/1/8 16:28:18
近日,美國哈佛醫學院劉如謙等研究人員合作發現,體內鹼基編輯可挽救小鼠的Hutchinson-Gilford早衰症候群。2021年1月6日,《自然》雜誌在線發表了這項成果。
研究人員表示,Hutchinson-Gilford早衰綜合症(HGPS或早衰症)通常是由LMNA(編碼核纖層蛋白A的基因)中顯性陰性C•G到T•A突變(c.1824 C> T; p.G608G)引起的。這種突變會導致RNA錯誤剪接,從而產生早老蛋白,這是一種有毒蛋白,可引起快速衰老,並將早衰兒童的壽命縮短至大約14歲。腺嘌呤鹼基編輯器(ABE)將目標化的A•T鹼基對轉化為G•C鹼基對,且副產物最少、無需雙鏈DNA斷裂或供體DNA模板。
研究人員使用了ABE來直接糾正源自早衰症兒童的成纖維細胞和HGPS小鼠模型中的致病性HGPS突變。從患有HGPS的兒童向成纖維細胞進行慢病毒ABE遞送可導致病原體等位基因校正87??%至91%,從而減少RNA錯剪接,降低早老素水平並校正核異常。無偏脫靶DNA和RNA編輯分析未檢測到治療後的患者來源成纖維細胞中的脫靶編輯。
在人類LMNA c.1824 C> T等位基因純合子的轉基因小鼠中,一次眶後注射編碼ABE的腺相關病毒9(AAV9)可以對病原性突變進行實質性、持久的校正(注射後六個月內各器官中約20–60%),從而恢復正常的RNA剪接並降低早老蛋白的水平。體內鹼基編輯挽救了小鼠的血管病理,保留了血管平滑肌細胞計數並防止了外膜纖維化。在產後第14天單次注射表達ABE的AAV9可以改善活力,並將小鼠的平均壽命從215天延長至510天。
這些發現表明,通過直接糾正其根本原因,體內鹼基編輯具有作為HGPS和其他遺傳疾病的治療潛力。
附:英文原文
Title: In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice
Author: Luke W. Koblan, Michael R. Erdos, Christopher Wilson, Wayne A. Cabral, Jonathan M. Levy, Zheng-Mei Xiong, Urraca L. Tavarez, Lindsay M. Davison, Yantenew G. Gete, Xiaojing Mao, Gregory A. Newby, Sean P. Doherty, Narisu Narisu, Quanhu Sheng, Chad Krilow, Charles Y. Lin, Leslie B. Gordon, Kan Cao, Francis S. Collins, Jonathan D. Brown, David R. Liu
Issue&Volume: 2021-01-06
Abstract: Hutchinson–Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative CG-to-TA mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1,2,3,4. Adenine base editors (ABEs) convert targeted AT base pairs to GC base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87–91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20–60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.
DOI: 10.1038/s41586-020-03086-7
Source: https://www.nature.com/articles/s41586-020-03086-7