一元二次方程應用題分類複習,傳播問題的解題技巧

2021-01-11 走進數學課堂

在初中階段,傳播問題是一元二次方程應用題比較常考的一個題型。但是在學習過程中,不少學生因缺乏解題技巧常在這類題上失分;下面分享下這類題的解題思路。

我們先來看一道例題,小明過新年用手機向他的一一些好朋友發簡訊,獲得信息的人也按小明發送的人數再加1人向外發簡訊,經過兩輪簡訊的發送,共有35人手機上獲得新年問候的同- -條信息,問第一輪和第二輪各有多少人收到新年問候的簡訊?

疾病的傳播問題要跟樹分枝相區別,例如:某種植物的根特別發達,它的主根長出若干數目的支根,支根中的1/3又生長出同樣多的小支根,而其餘支根生長出一半數目的小支根,主根、支根、小支根的總數是109個,這種植物的主根長出多少個支根?

解決本類題要扣住兩點:一是傳染源,二是傳染的速度;若開始時傳染源是1,傳染的速度是x,則一輪傳染後是1 +x;二輪傳染時,傳染源為1 +x,傳染的速度還是x,則二輪傳染後是(1 +x)2。

相關焦點

  • <四>、一元二次方程應用題的解題技巧分析
    學會將應用問題轉化為數學問題,列一元二次方程解有關應用題是九年級數學的重點和難點。對於許多初中生來說,一遇到應用題就無從下手,左右為難,根本就沒有思路。其實解決不了應用題存在的主要問題是,①基礎知識掌握不紮實,②不能沉下心來審題分析題,③缺乏必要的解題技巧。所以對於這些知識點,需要多加練習,熟練掌握每種類型的基本等量關係。
  • 一元二次方程解應用題之增長率問題,明確數量關係,掌握方法技巧
    初中數學的學習中,一般牽扯到方程的問題,基本上都會涉及到用方程解應用題的題目,在學習一元二次方程中,重要的內容除了解方程以外,利用一元二次方程解應用題也是中考的要求,並且是中考中佔有比較大的分值,而利用一元二次方程解應用題主要考查的有利潤問題,平均變化率問題,還有幾個圖形的問題。
  • 中考數學專題複習:第8講一元二次方程及其應用
    >基本思想:化歸與轉化思想,一元二次方程的解法:直接開平方法、配方法、公式法、因式分解法,都是運用了「轉化」的思想,把待解決的問題(一元二次方程),通過轉化,歸結為已解決的問題(一元一次方程),也就是不斷地把「未知」轉化為「已知」.
  • 中考數學第一輪複習6,一元二次方程考點梳理,明確複習方向
    一元二次方程是初中數學的重點和難點,在近幾年常以應用題和綜合題的形式出現,所佔分值5至10分。預計2019年將考察一元二次方程的解、根的判別式及應用,以此為工具和手段解決綜合問題,考查形式多樣;一次函數與反比例函數、二次函數圖象的交點問題也會涉及此內容。
  • 怎樣學好一元二次方程?好方法和好資料必不可少,趕緊備一份!
    一元二次方程是初中數學中的重點和難點,如何才能透徹的掌握這一章?首先回歸教材、筆記,通過知識的複習理清所學,構建知識網絡;其次精選典型例題,落實基本方法、基本計算、同時強調解題規範;最後從提高應試能力和綜合素質的角度上來說,歸納解題方法(如證明方程根的情況、求參數取值方法),了解命題的方法。
  • 一元二次方程解應用題其他常見類型,實例詳解,明確解題方法
    前面我們已經介紹了利用一元二次方程解應用題幾種常見的類型,對於列方程解應用題,不僅是教學的重點,也是難點,同時也是學生們的重難點。今天我們一起學習其他常見的類型,通過實例的形式,學習解題思路,明確解題方法。希望能夠幫助正處於困難或者正在學習的同學們。
  • 2020初三數學複習:利用一元二次方程解決實際問題,中考提分速練...
    分析根據空白區域的面積矩形空地的面積可得.點評本題主要考查由實際問題抽象出一元二次方程,解題的關鍵是根據圖形得出面積的相等關係.分析設每個季度平均降低成本的百分率為x,根據利潤=售價﹣成本價結合半年以後的銷售利潤為(65﹣50)元,即可得出關於x的一元二次方程,此題得解.點評本題考查了由實際問題抽象出一元二次方程,找準等量關係,正確列出一元二次方程是解題的關鍵.三、應用題11.
  • 學霸少翻課本有原因,一元二次方程考點總結,有它誰還用課本?
    學好初中數學離不開學習的幾個環節(預習、聽課、複習鞏固與作業、總結),不論任何一個環節,都是為了更好地掌握考點。就《一元二次方程》這章來說,主要的考點有5個:(1)一元二次方程的定義;(2)解一元二次方程;(3)一元二次方程根的判別式;(4)一元二次方程根與係數的關係;(5)一元二次方程的應用。一元二次方程是只含有一個未知數,含未知數項的最高指數是2的整式方程,用式子來表示就是形如ax+bx+c=0(a≠0)。
  • 《實際問題與一元二次方程》設計
    一、教材分析: 1、教材的地位和作用: 生活中不少實際問題的解決都要用到方程的知識,在學習本節課之前,學生已經學會了用一元一次方程、二元一次方程(組)解決實際問題,所以本節課對學生來說並不陌生。本節內容是運用一元二次方程分析解決生活中的兩類實際問題:傳播問題和增長率問題。
  • 中考數學總複習:第8講《一元二次方程》考點梳理+題組分類剖析
    一元二次方程是繼一元一次方程以後中考數學方程板塊的一大重難點,因為它與我們要學習的二次函數有很大的關係。那麼我們首先來看看一元二次方程都有哪些考點呢?一元二次方程成立必須同時滿足三個條件:①是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程。
  • 一元二次函數與一元二次不等式和方程
    2019高考數學之一元二次函數與一元二次不等式1 概念一元二次函數:一個未知數,未知數的最高次數為二次。一元二次方程:一個未知數,未知數最高次數為二次的方程(等式)。基本概念2 聯繫與區別一元二次函數的圖像即可得到一元二次方程的解,其為一元二次函數圖像與
  • 初中數學:一元二次方程基礎知識點
    一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右兩邊相等的未知數的值叫做一元二次方程的解,也叫做一元二次方程的根.細節剖析判斷一個方程是否為一元二次方程時,首先觀察其是否是整式方程,否則一定不是一元二次方程;其次再將整式方程整理化簡使方程的右邊為0,看是否具備另兩個條件:①一個未知數;②未知數的最高次數為2.
  • 2020高考第一輪複習:高中數學21種解題方法與技巧
    高考網小編為各位考生整理了一些高考複習方法,供大家參考閱讀!  1、解決絕對值問題  主要包括化簡、求值、方程、不等式、函數等題,基本思路是:把含絕對值的問題轉化為不含絕對值的問題。具體轉化方法有:  ①分類討論法:根據絕對值符號中的數或式子的正、零、負分情況去掉絕對值。  ②零點分段討論法:適用於含一個字母的多個絕對值的情況。
  • 中考數學診斷,一元二次解方程,配方公式大顯能
    今天終於輪到了一元二次方程的考點,老規矩我們來聊聊常見的題型。>一元二次方程解法很多,不管用什麼解法前提是先要化成一般式如直接開平方是解一元二次方程裡最簡單的也是最基礎的,但它有一定的限制,不是所有的一元二次方程都能用直接開平方法。
  • 靈活運用六步法,列一元二次方程解決實際問題
    一元二次方程是九年級的內容,中考也是每年必考,特別是用一元二次方程模型,解決實際生活問題,比值很大,因此初三的學習這是一個重難點,也是拉分關鍵部分。今天,我想說說,用一元二次方程解實際問題的步驟及考試中遇到題型的解答方法。
  • 一元二次方程,面積類應用題,4種重要題型詳細分析
    初中數學,一元二次方程,面積類應用題,4種重要題型詳細分析。面積(包括體積)問題是一元二次方程應用題中的重點之一,但稱不上是難點,下面這4道練習題分別代表一種常見的面積類型,好好研究一遍,基本上就可以掌握面積問題列方程的特點。
  • 學不懂一元二次方程應用題看過來,掌握這四個類型就能考高分
    一元二次方程應用題是九年級數學的重點,也是難點;不少同學在學習的過程中,常常因為沒能從整體上把握應用題的基本類型,有些的類型總是反反覆覆,而有些類型卻是等考試時才發現自己沒有做過。本題考查了一元二次方程的應用與一元一次不等式的應用,解題的關鍵在於能正確理解題意找出等量關係與不等關係:(1)根據平均增長率問題列一元二次方程求解;(2)根據兩次利潤總和大於或等於3120列不等式求解。
  • 初三數學《一元二次方程》題型分類總結
    一元二次方程作為進入初三的第一個章節,其重要性不言而喻,一元二次方程即是中考數學中的重要考察章節,也為二次函數的學習打下基礎。換言之,學好一元二次方程的內容將會給初中數學最重要最難的二次函數部分打下堅實的基礎。同時一元二次方程將會出現在相似三角形,圓,二次函數等重要章節的計算部分。
  • 這份一元二次方程應用題總結全面,記得多練習
    學會將應用問題轉化為數學問題,列一元二次方程解有關應用題是九年級數學的重點和難點。不少同學遇到這類問題總是左右為難,難以下筆,所以對於這個知識點,需要多加練習,熟練掌握每種類型的基本等量關係。1題根據「利息=本金×利率×時間」(利率和時間應對應),代入數值,計算即可得出結論;2題解一元二次方程求出中線,再根據直角三角形斜邊上的中線等於斜邊的一半解答;3題先求出一元二次方程的兩根,那麼根據三角形的三邊關係,排除不合題意的邊,進而求得三角形周長即可。
  • 一元二次方程配方法,4道提高題
    初中數學,一元二次方程配方法,4道提高題。第1題,二次項係數為1,根據配方法的原則,當常數項等於一次項係數一半的平方的時候,這個一元二次式子就是一個完全平方式,據此可以列出一個只含有字母k的等式,解方程即可求出k得值。第2題,小括號明顯阻礙了咱們觀察和分析這個式子的特點,所以第一步把括號去掉,得到①式。