決戰高考數學黃金三十天:第13天反設直線方程,巧解圓錐曲線問題

2020-12-05 數學解憂鋪

直線與圓錐曲線問題是解析幾何的一個基本問題,運算量大是它的一個特點,根據題設條件特點,靈活選用恰當的直線方程,與圓錐曲線方程聯立,會大大簡化求解過程.

如在解析幾何綜合問題中,一般常規設法是點斜式比較適合。但如果遇到的點為(m,0)考慮常規的設法為時,往往不如把直線設為:x=ty+m更加簡便,其中t為k的倒數。該設法包括了直線經過該點而斜率不存在的情況,反設法可能可以減少一些計算量。

經過定點設置直線方程的設法主要有以下兩種,1.當經過定點或者直線斜率不存在而不能為0時,此類設法佔有一定的優勢。2.設置參數法,比較適合與定點距離有關的問題。

例題1中,因為點F(c,0)的縱坐標為0,所以反設佔有一定的優勢,為便於對比,解法一採用常規的點斜式設法,解法二採用反設法,通過對比,可以發現一般設法在解決此類問題上計算複雜且不容易想到,易忽視直線斜率不存在的情況,增加計算難度,而反設法在求解此類問題時具有一定的優勢.

相關焦點

  • 吳國平:巧學+方法=攻破直線與圓錐曲線綜合問題
    高考數學要想取得高分,考140以上的分數,那就必須突破壓軸題。高考數學壓軸題具有知識點多、綜合性強、能力要求高等特點,但不管哪種特點都要求我們提高運用數學知識解決問題的能力。如直線與圓錐曲線的綜合問題就是高考數學常考的壓軸題類型之一,此類問題有一定的難度,在高考中大部分都是以難題、壓軸題的形式出現,考點主要涉及位置關係的判定、弦長問題、最值問題、軌跡問題、對稱問題等。同時直線與圓錐曲線的綜合問題更加考查一個學生數形結合、分類討論、函數與方程、等價轉化等數學思想方法掌握情況,這就要求我們具有一定的分析問題和解決問題的能力。
  • 備戰2018數學高考|最新模擬題選講(圓錐曲線定點定值、存在性)
    【方法點睛】:定點、定值問題通常是通過設參數或取特殊值來確定「定點」是什麼、「定值」是多少,或者將該問題涉及的幾何式轉化為代數式或三角問題,證明該式是恆定的. 定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結果,因此求解時應設參數,運用推理,到最後必定參數統消,定點、定值顯現.【方法點睛】:橢圓是重要的圓錐曲線的代表之一,也是高考重點考查的重要內容之一。
  • 吳國平:都說高中數學難,但難於上青天是圓錐曲線
    如果說解析幾何是高中數學教學的重點內容之一,那麼核心部分就是圓錐曲線。圓錐曲線綜合問題一般被高考命題老師用來考查考生的分析處理信息的能力、劃歸與轉化能力、數形結合做題能力、解題計算能力等,同時檢驗學生對基礎知識的掌握情況與靈活運用能力。因此跟圓錐曲線有關的內容是每年高考的必考內容之一,如直線與圓錐曲線是高考數學重點考查內容。
  • 學好直線與圓錐曲線,先從最簡單的基礎題型開始
    高考數學,學好直線與圓錐曲線,先從最簡單的基礎題型開始。題目內容:已知橢圓C:x^2/a^2 +y^2/b^2 =1(a>b>0)的一個頂點為A(2,0),離心率為√2/2, 直線y=k(x-1)與橢圓C交與不同的兩點M,N。
  • 吳國平:高考數學高分的保障,會解平面解析幾何相關問題
    高考數學會考什麼?怎麼考?一直是所考生、家長、教師非常關心的話題。反過來,如果大家參加高考對考試不是十分了解,如高考數學考查範圍是什麼?考查重難點有哪些等等,都沒有一個大概了解,以這樣的狀態去應對高考數學複習,肯定是非常吃虧,甚至很難取得成績進步。高考數學重難點非常多,如數列綜合問題、函數綜合問題、圓錐曲線綜合問題等等。
  • 圓錐曲線的切線與切弦
    圓錐曲線是高中數學的一個重要分支,是高考數學的一個主體與支撐,其中直線與圓錐曲線的位置關係(特別是相切的充要條件判斷,切線計算,切弦計算)更是高考數學的必考內容之一,也是高考數學的一個難點之一。直線與圓錐曲線的切線與切弦,有著明顯簡潔的數學結構特徵,也有著美妙的數學幾何意義。
  • 考前20天高考數學備考 考生應抓緊八類題複習
    推薦:2009年高考數學複習衝刺 找出得分關鍵點  8種題型都包括哪些  高考所剩的時間不多了,面對茫茫題海,許多考生難免心慌意亂,甚至焦慮。潘愉芳老師建議考生在這一兩天的時間裡把數學複習計劃安排好,按照命題趨勢抓住重點,選擇代表性題型重點複習,這樣在最後20天裡才能輕鬆而又有收穫。
  • 直線與圓錐曲線位置關係有關技能,助你有效攻克相關高考高頻題型
    溫馨提示:本講屬於高中數學圓錐曲線專題——是繼本號原創之導數專題之後,又一個在公眾平臺上發布的、用於攻克高考壓軸大題的精品課程!在本講開始之前,先來看一下近五年高考中圓錐曲線有關題目的命題特點。近五年高考所有相關題目列舉如下:① 2016年高考1卷理數的圓錐曲線有關題目② 2017年高考1卷理數的圓錐曲線有關題目③ 2018年高考1卷理數的圓錐曲線有關題目
  • 高考最後三十天,回歸課本是關鍵,圓錐曲線知識點總結個大家
    圓錐曲線方程考情分析:圓錐曲線是高考的重點和熱點,選擇、填空題主要以考查圓錐曲線定義、標準方程和幾何性質(特別是離心率)為主,屬於中偏上難度.考綱要求:1.在平面直角坐標系中,能結合具體圖形,確定直線位置的幾何要素.2.理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式.
  • 高中數學知識點總結,圓錐曲線題型常用方法的總結
    在這類題型中,主要考察的知識點要求是,能夠準確理解基本概念,掌握基本公式,熟練掌握直線以及圓錐曲線方程的正確應用和針對係數的數學公式的表達,在解答曲線和直線的關係的時候,善於應用圓的方程,掌握三大曲線的數學表達公式,以及圓錐曲線的相關軌跡和定值,最值問題。在解答圓錐曲線和直線關係題型中經常會用到下面這幾種方法進行求解。
  • 吳國平:學會運用數形結合思想來解決直線與圓錐綜合問題
    其實,不管是數學學習,還是其他科目的學習,說白了,我們先掌握各個知識點,然後針對每一個知識點進行習題訓練,最後進行總結,學會「套路」。數學學習更是如此,如果我們對知識點掌握不深,理解不夠透徹,不要說用知識點去解決問題,可能連針對性訓練都過關不了。如直線與圓錐曲線相結合的綜合問題,一直是高考數學中的重點和必考內容。
  • 高考數學,圓錐曲線大題,判斷點到直線的距離是否是定值
    高考數學,圓錐曲線大題,判斷點到直線的距離是否是定值。題目內容:已知點P,Q的坐標分別為(-2,0),(2, 0),直線PM,QM相交於點M,且它們的斜率之積是-1/4。⑴求點M的軌跡方程;⑵過點O作兩條互相垂直的射線,與點M的軌跡交於A、B兩點,試判斷點O到直線AB的距離是否為定值,若是請求出這個定值,若不是請說明理由。第一問比較簡單,需要注意的是,因為直線PM和QM的斜率都存在,所以x≠±2。
  • 高考壓軸題型「圓錐曲線」——待定係數求方程,幾何轉至代數中
    圓錐曲線試題在每年高考中失分現象十分嚴重,這已經成為幾乎所有高三學生的心頭痛,究其原因是考生對圓錐曲線中的易錯點、易混點、易漏點把握不好或對數學思想方法應用不當,或思維不縝密、運算錯誤、解題失策等。求圓錐曲線方程的策略一般有以下幾種:①幾何分析法+方程思想;②設而不求+韋達定理;③第二定義+數形結合;④參數法+方程思想。幾何分析法,利用圖形結合圓錐曲線的定義與幾何性質,分析圖中已知量與未知量之間的關係,列出關於方程中參數的方程,解出參數值即可得到圓錐曲線方程,要求平面幾何中相似等數學知識必須十分熟練。
  • 高中數學:「齊次式」法巧解圓錐曲線斜率(含例題解析)可列印
    【距離2020年高考還有71天!】同學們、家長們,大家好,我是你們的社長。今天我們來說一說高中數學。圓錐曲線是歷年高考出題的重點與難點,而定點定值問題又是在圓錐曲線的出題中,最常見的出題形式。這個問題考查同學們的問題分析能力,知識的綜合運用能力,數學的運算能力,對技巧要求比較高。而大多數同學普遍性的存在計算不完全或是計算不對的情況。而化解這類問題的關鍵就是引進變得參數表示直線方程、數量積、比例關係等,根據等式的恆成立、數式變換等尋找不受參數影響的量。為了避免計算量的問題,我們總是會用一些簡單的方法進行解題,比如同學們熟知的「點差法」,因為非常小的計算量,而深受大家喜愛。
  • 軌跡方程
    連平中學 江海民新課標新高考對曲線與方程一節內容作出刪減,出於解析幾何中一般的曲線與方程可以會意,後面圓錐曲線的學習中也可以理解到解析幾何研究的主要問題是:根據已知條件,求出表示曲線的方程,通過曲線的方程,研究曲線的性質。
  • 很多人說:誰會圓錐曲線,高考數學必定是學霸
    有人說,如果不會解圓錐曲線相關問題,高考數學就不可能得高分。這句話看似誇張的話,其實一點也不誇張,除了說明圓錐曲線相關知識內容的重要性之外,更強調此類題型一直是高考數學必考的重點和熱點。解答題主要是以圓或橢圓為基本依託,考查橢圓方程的求解、考查直線與曲線的位置關係,除了本身知識的綜合,還會與其他知識如向量、函數、不等式等知識構成綜合題,多年高考壓軸題是解析幾何題。因此,你若想在高考數學中取得優異的成績,就必須在高考來臨之前學會這塊知識內容。
  • 高考數學解題思想:函數與方程思想
    新東方網高考頻道整理高考數學蘊含的六大數學思想,大題無外乎就這幾類,吃透規律事半功倍。   高考數學解題思想:函數與方程思想   函數思想是指運用運動變化的觀點,分析和研究數學中的數量關係,通過建立函數關係(或構造函數)運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關係入手,運用數學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題
  • 高考數學,解析幾何壓軸題,如何證明直線過定點
    高考數學,解析幾何壓軸題,如何證明直線過定點。題目內容:已知四點P1(1,1),P2(0,1),P3(-1,√3/2),P4(1,√3/2)中恰有三點在橢圓C上;(1)求C的方程;(2)設直線L不經過P2點且與C相交於A,B兩點.若直線P2A與直線P2B的斜率的和為-1, 證明:L過定點。
  • 圓錐曲線的弦長「萬能公式」
    (許興華數學)         眾所周知,我們把圓、橢圓、雙曲線、拋物線統稱為圓錐曲線(即二次曲線)。用公式解決弦長問題,計算量大,容易出錯,這正是高考命題需要考查學生計算能力的一個重要方面。我們通常用「設而不求」的方法,可得到其弦長公式。這種「設而不求」的思想,在處理圓錐曲線相關問題中佔有重要地位。本文將給同學們介紹「圓錐曲線弦長萬能公式」,用它來解題可以簡化運算過程。
  • 衝刺2018年高考數學,典型例題分析45:橢圓性質的應用
    題幹分析:(I)由離心率公式和點滿足橢圓方程,及a,b,c的關係,解方程可得a,b,進而得到橢圓方程;(Ⅱ)討論直線的斜率不存在和存在,設出直線的方程為y=kx+3/2(k≠0),與橢圓方程聯立,運用韋達定理,再由|AM|=|AN|,運用兩點的距離公式,化簡整理可得k的方程,解方程可得