初二秋季班系列——【第11講 一元二次方程初步】

2020-12-10 騰訊網

前言

科學研究發現,知識在經過人的注意過程的學習後,便成為了人的短時的記憶,但是如果不經過及時的複習,這些記住過的東西就會遺忘,學過的知識在一天後,如不抓緊複習,就只剩下原來的25%。而經過了及時的複習,這些短時的記憶就會成為了人的一種長時的記憶,從而在大腦中保持著很長的時間,所以學過的知識要及時複習!

初中三年的學習,此公眾號將發布大量的解決各階段問題的學習視頻和學習資料,大家要養成定期關注公眾號消息的習慣,讓充滿挑戰的初中學習更有效!

初中三年學習特點

【初一不分上下】

初一是為整個初中三年學習打下堅實基礎的階段,這個階段不管是知識層的全面深入的挖掘,還是思維方式的培養,以及學習方法和學習習慣的養成,都是為初二和初三做準備,初一是培養各類計算能力的黃金時期。

【初二兩極分化】

正式進入初二以後,孩子們的差距會驟然拉開,打破了初一整體差距不大的現象,初二出現的差距正是因為初一階段養成的學習習慣和思維方式的不同產生的。

【初三天上地下】

初三是最後的衝刺階段,尤其是到了初三下學期,通過前面兩年的學習,這個階段就是對前兩年的知識積澱和能力培養的最終考驗。

1

張玉清老師的視頻講解

視頻總時長:120分鐘

完整版課程視頻連結(觀看密碼聯繫作者)

https://v.youku.com/v_show/id_XNDk3NTYyNzg3Ng==.html

2

張玉清老師的課堂筆記

3

例題答案與解析

相關焦點

  • 中考數學專題複習:第8講一元二次方程及其應用
    第8講一元二次方程及其應用考點分析1.一元二次方程的概念及解法2.一元二次方程根的判別式思想方法>基本思想:化歸與轉化思想,一元二次方程的解法:直接開平方法、配方法、公式法、因式分解法,都是運用了「轉化」的思想,把待解決的問題(一元二次方程),通過轉化,歸結為已解決的問題(一元一次方程),也就是不斷地把「未知」轉化為「已知」.
  • 初中數學,由解求一元二次方程,4種重要題型
    初中數學,由解求一元二次方程,4種重要題型。咱們已經講過因式分解法求一元二次方程的解,令一個因式等於0,就可以得到方程的一個解,所以如果m和n是一元二次方程的兩個解,則這個方程就是(x-m)(x-n)=0,下面的4道題分別從不同角度考查了因式分解法的這個性質。
  • 【一元二次方程】根的判別式
    的符號可決定一元二次方程根的情況. 叫做一元二次方程  中:(1)當△>0時,方程有兩個不相等的實數根;(2)當△=0時,方程有兩個相等的實數根;(3)當△<0時,方程沒有實數根.——《義務教育 數學課程標準》2011年版  P2919.已知關於x的一元二次方程(x-3)(x-2)=|m|.(1)求證:對於任意實數m,方程總有兩個不想等的實數根;(2)若方程的一個根是1,求m的值及方程的另一個根.
  • 中考數學總複習:第8講《一元二次方程》考點梳理+題組分類剖析
    歡迎大家來到唐老師小課堂,今天已經是中考數學總複習的第八講了,謝謝大家的關注,雖然總體的效果並不是很好,但唐老師還是堅持用文章和視頻同時更新中考數學複習中的知識點和一些易錯點,講得不好的地方希望大家多提意見。
  • 解一元二次方程的方法總結
    解一元二次方程的方法在前面的每個視頻裡面都已經講了,今天給大家總結一下解一元二次方程的方法:圖一圖一是解一元二次方程的第一種方法,直接開平方法,此方法用於簡單的解方程中,但是注意的是要把二次項係數化成「1」再做。
  • 九年級上冊數學第一單元第一講一元一次方程和一元二次方程
    九年級數學上冊第一單元一元二次方程知識點講解及習題練習本次課程我們專門來講一下一元二次方程,為幫助大家很好掌握知識,咱們結合一元一次方程來進行相關的講解,回味舊知識,學好新內容!1 你要認識的概念長相特徵回憶舊知識:一元一次方程:含有一個未知數,未知數最高次數為1的等式為一元一次方程。例如:4x+4=0為關於x的一元一次方程。在舊知識的基礎上改進,學習新知識:一元二次方程:首先必須是等式,其次是含有一個未知數,再次未知數的最高次數必須為2,這個方程就是關於某個未知數的一元二次方程。
  • 初中數學一元二次方程的一般求解方法,可以整理到筆記本上
    初中階段我們學習了幾種方程,分式方程,一元一次方程,二元一次方程,其實不難發現,這幾種方程的求解殊途同歸,都是要化成一元一次方程來進行求解。初三我們要學習新的一種方程,一元二次方程,這個方程的求解與以往已經完全不同。
  • 初中數學一元二次方程求解例題分析,強化練習求根方法
    之前我們講解了一元二次方程的概念和幾種求解方法,比如直接開平方,配方法,因式分解法,公式法,這節課我們具體根據例題,來講解這幾種方法的應用。一、直接開平方法對於直接開平方法解一元二次方程時注意一般都有兩個解,不要漏解,如果是兩個相等的解,也要寫成x1=x2=a的形式,其他的都是比較簡單。
  • 一元二次函數與一元二次不等式和方程
    2019高考數學之一元二次函數與一元二次不等式1 概念一元二次函數:一個未知數,未知數的最高次數為二次。一元二次方程:一個未知數,未知數最高次數為二次的方程(等式)。基本概念2 聯繫與區別一元二次函數的圖像即可得到一元二次方程的解,其為一元二次函數圖像與
  • 一元二次方程配方法,4道提高題
    初中數學,一元二次方程配方法,4道提高題。第1題,二次項係數為1,根據配方法的原則,當常數項等於一次項係數一半的平方的時候,這個一元二次式子就是一個完全平方式,據此可以列出一個只含有字母k的等式,解方程即可求出k得值。第2題,小括號明顯阻礙了咱們觀察和分析這個式子的特點,所以第一步把括號去掉,得到①式。
  • 一元二次方程解的個數問題,5大重要題型,詳盡解析
    初中數學,一元二次方程解的個數問題,5大重要題型,詳盡解析。這節課主要練習兩個問題,一、如何判斷一元二次方程解的個數:對於△=b-4ac,其大於0時,方程有兩個不相等的實數根,等於0時,方程有兩個相等的實數根,小於0時,方程無實數根;二、給出一元二次方程實數解的個數,可以得出△=b-4ac的符號:有兩個不等實根時,△大於0,有兩個相等實根時,△等於0,無實根時,△小於0。
  • 一元二次方程的解法,一元二次方程係數與根的關係運用
    今天分享的內容——一元二次方程的知識一.一元二次方程的概念二.降次——解一元二次方程直接開平方法體現了降次思想,將一元二次方程轉化為兩個一元一次方程來解。在一元二次方程aⅹ2+bⅹ+C=0(a≠0)中,若a,c異號,則方程一定有兩個不相等的實數根,判別式通常用希臘字母△表示,即△=b2-4ac。
  • 一元二次方程,學會使用根與係數的關係,只需搞定這幾個題型
    初中數學複習,一元二次方程,學會使用根與係數的關係,只需搞定這幾個題型。第1題:第1題中的一元二次方程的一次項係數和二次項係數都是已知,所以方程的兩根之和是一個已知的數字,這是本題最大的特點,據此可求出方程的一個根(-1),然後把這個根代入方程即可求出m的值。
  • 九數上:二次函數與一元二次方程複習,還不會的快收藏
    講到函數與方程,同學們並不陌生,很容易就能想到在初二學習的一次函數與一元一次方程,一元一次不等式,二元一次方程組的內容。所以說有了之前的基礎,我們對函數與方程內容的學習就會容易很多,而本節我們要講的就是二次函數與一元二次方程的內容,正是九年級的同學現在正在學習的,不知道夥伴們學會了嗎?如果還沒有完全理解,那就別錯過,快收起來再好好複習。
  • 【數學發現】一元二次方程求根公式
    不過由於當時沒有發明符號代數,在這些資料上,說清楚一個題目之後,就用四則運算把它計算出來,今天的人們很難嚴格地劃分這樣的計算是在解一元一次方程還是在做算術題。對於受過九年制義務教育的人來說,一元二次方程是非常熟悉的內容。我們能解任何一個一元二次方程(包括判定一個一元二次方程沒有實數根),原因是我們掌握了一元二次方程的求根公式。
  • 一元二次方程求解過程推導
    一元二次方程的解法主要有配方法、公式法和因式分解法等。首先介紹配方法。將一元二次方程化為如下形式若解得以上是用配方法求解一元二次方程的過程,目的就是為了等式左邊配成一個完全平方式,如果等式右邊為非負,則方程在實數範圍內有解。
  • 《實際問題與一元二次方程》設計
    一、教材分析: 1、教材的地位和作用: 生活中不少實際問題的解決都要用到方程的知識,在學習本節課之前,學生已經學會了用一元一次方程、二元一次方程(組)解決實際問題,所以本節課對學生來說並不陌生。本節內容是運用一元二次方程分析解決生活中的兩類實際問題:傳播問題和增長率問題。
  • 九數上:配方法解一元二次方程知識詳解+同步訓練,必收藏
    提到解方程,對於初三的同學來說並不陌生,因為在初一和初二時已經陸續學習了解一元一次方程和解二元一次方程,那麼上了初三,開始學習解一元二次方程,又是怎樣解的呢?一元二次方程是人教版九年級數學上冊第一章的內容,正是同學們現在正在學習的內容,解一元二次方程的方法有直接開平方法,配方法,公式法和因式分解法,本節小隴老師分享給同學們的是用配方法解一元二次方程。配方法解一元二次方程就是利用配方的形式解一元二次方程的方法,通過配方將方程變形成(x+m) = p的形式,然後通過開方降次進而求出方程的根。
  • 數學專題——一元二次方程根的分布
    一元二次方程是初中數學中必學的內容,而且也是初中數學中的難點部分,在中考數學中所佔的比例也很大,因此學好一元二次方程極為重要。不僅如此,在歷年的高考試題中,一元二次方程總是以二次函數的形式出現,主要考查一元二次方程根的分布。基礎內容總結:
  • 初中數學:一元二次方程基礎知識點
    初中數學:一元二次方程基礎知識點一元二次方程基本知識點一元二次方程知識框架一元二次方程的有關概念1. 一元二次方程的概念:通過化簡後,只含有一個未知數(一元),並且未知數的最高次數是2(二次)的整式方程,叫做一元二次方程。