-
數學學科知識點之極限的求法
數學學科知識點之極限的求法 對於數列的求和問題,一般是先觀察數列的特點和規律,如果通項公式求出,可先求出通項公式再決定使用哪種求和方法.下面介紹幾種常用的求和方法.
-
高一到高三數學熱點難點吃透大全:數列通項公式必備的方法和技巧
求數列通項公式是歷年高考數學的重點難點!大綱對這些要求如下1.了解數列的概念(定義、數列的項、通項公式、前n項和)2.了解數列三種簡單的表示方法(列表法、圖象法、通項公式法);3.了解數列是自變量為正整數的一類特殊函數,了解數列的分類(按項數分、按項間的大小等).
-
學霸整理——求數列的通項公式解法集錦,轉化、歸納一文全懂
數列問題是高中階段的一個重要內容板塊,是高考必考的一個內容,主要圍繞定義、遞推公式、通項公式、前n項公式和及相關性質等方面的問題來研究,而這些研究又都是從最簡單的等差、等比數列作為切入點來展開的,其中,求數列的通項公式及前n項和公式是一個重點,欲求通項公式,必須以遞推公式為依據,欲求前
-
吳國平:圈起來,這個一般會考到,怎麼求數列遞推問題以及通項公式
通過遞推數列來求通項類數列問題,很多時候我們都會碰到與函數、方程、不等式、三角、幾何等知識相結合的綜合問題。遇到此類問題,我們要學會利用第n與前n項和關係、構造等比等差數列、累積累差等求數列通項公式方法,提高將非特殊數列問題轉化為特殊數列問題及利用等比等差數列通項公式解題能力和分析問題解決問題能力。此類考查很多時候出現在小題或大題的第一小題中,是有一定難度的題目。
-
數列的通項公式求法總結
方法一:歸納,猜想數列的通項公式這種方法適用於數列規律性比較強,能明顯看出一般性規律的數列,並不常用。方法二:公式法利用等差或等比數列的通項公式這種適用於已知是等差或等比數列,或能證出是等差或等比數列,直接用公式法求數列。
-
高中數學:通項公式10種求法!秒變「數列大神」!
數列問題,是高中數學的一個難點,對於等差、等比的通項公式問題,很多同學都犯頭疼,因為每一種數列問題,都存在很多的變形式,但是,很多同學卻不能很好的應用,有些同學即使勉強掌握了數學的各種形式,但是一到考試的時候,面對多種形式,卻不知道怎麼使用,浪費了大量時間,考試時間是有限的,這種掌握其實和不會也沒什麼區別
-
高中數學,求數列的最大(小)項的一些方法技巧
數列中對於最大項最小項的求法也有一些,目前我們主要有兩種方法,一種是利用函數的最值法,另一種是不等式法一,函數最值法這是一個二次函數,根據二次函數的特點可以找出此數列的最大值以及最小值二,不等關係法利用數列最大項比前一項大比後一項也大的特點,可以根據數列的通項公式來列式計算數列的通項公式和遞推公式,在數列的學習中算是比較簡單的知識點,但類似於「累加法」和「累乘法」這種計算的技巧我們還是要學會熟練的使用最後謝謝大家關注,歡迎大家針對相關問題留言
-
高考數學:數列的通項公式和求和題的命題規律和解題技巧!
數列的通項與求和是歷年高考命題的重點與熱點,試題較為綜合,主要有以下命題角度:(1)數列的前n項和Sn與項an之間的關係的應用;(2)簡單的等差數列、等比數列求和問題;(3)綜合性的數列求和,主要涉及裂項相消法、錯位相減法、分組求和法的應用;(4)數列的綜合問題,與函數、不等式、三角以及數學文化等知識相結合,綜合考查考生對數列知識的掌握程度與應用能力
-
求數列通項公式的11種方法——高三同學必須掌握
同學們都知道,求數列通項公式基本上是每年高考必考題。所以,求通項公式的各種方法 和技巧每位同學都應該徹底掌握。利用遞推關係求數列通項一般有11種方法,有累加法、累乘法、等差法、換元法。相信同學們都再熟悉不過了。
-
高考數列通項公式解題方法(6):階差法、特徵方程法
現在就讓我們看看,針對求數列通項的題型,有哪些便捷的解答方法。今天分享的數列通項公式解法有:階差法、特徵方程法。2、對無窮遞推數列 針對無窮遞推數列來說,可以採用階差法(逐項相減法或兩式相減法)來求解相應的通項公式。
-
遞推式求數列通項公式你會嗎?
一、前言之前已經學了等差數列,等比數列的概念以及通項公式,但是這只是針對於簡單的求通項公式。(如果讀者沒有看過作者發布的文章,可以往前翻看一下)二、遞推式是什麼?既然要學習使用遞推式求通解公式,那就必須要明白什麼是遞推式啊?遞推式從字面上看就是遞推,也就是從前一項推出後一項,也就是如下:這就是前一項通過公式推出後一項,這就是遞推式求解每一項的值。三、遞推式如何求解?
-
等差數列知識點的匯總及公式的證明過程
等差數列也是考試當中必不可少的內容,很多的公式和性質都是源自於等差數列的概念。這個概念需要注意的點就是:從第二項起和同一個常數。即:一般地,如果一個數列從第二項起,每一項與它前一項的差等於同一個常數,那麼這個數列就叫做等差數列。
-
競賽(或高考):用待定係數法求數列的通項公式和前n項和
,只是我們不知道這種操作的術語這樣我們了解了階差數列的定義,用此定義再引申出一個新的概念n階等差數列顯然我們學習過的等差數列也就是就是一階等差數列,有關性質我們已經很屬性了,但不妨再回顧一下,以便幫助我們更好的理解今天要介紹的內容一階等差數列的遞推公式(特徵部分,或a(n+1) - an),通項公式,前n項和公式所關於n的多項式的此時分別是0,1,2,也就是次數依次加一
-
從雙數列遞推求通項探究遞推數列與三角函數公式結合的問題
近日有學生問到一道數列題,難度不大,但是很具有代表性.筆者對這類題型進行了較深入的研究,發現是一個很好的數列出題方向.【評註】本方法對代數變形要求較高,還需要聯想到二倍角公式進行換元,最後用到了一個常用的三角恆等變形,適合作為一道三角與數列綜合的例題進行講解.
-
高考數學每日答疑12:數列SA法+構造新數列+數列求和
今天解答高三同學所提問題:數列SA法1.SA法在什麼情況下使用,當已知前n項和求通項公式時,我們採用數列求和方法1.公式法:用於求等差數列和等比數列的前n項和;2.裂項相消法:用於分式求和;3.錯位相減法:用於求等差數列×等比數列的和;2.分組求和:用於多種形式相加減。
-
等差數列等比數列前n項和公式總結
高中數列在教師資格和教師招聘考試中都是非常重要的考點,關於數列的考題雖然表面看去變化多樣,但看其本質,可歸結為兩大類:求一個數列的通項an,求一個數列的前n項和,而解決這兩類題都少不了等差數列以及等比數列的求和公式。這篇文章就針對等差和等比數列求和公式給出推導和證明過程。
-
高考題型之數列問題總結歸納
大家好,我是試題小講,今天為大家總結一下關於高考數學題型之一的數列問題,考查數列通常都是在大題中出現。總結一下主要考查題型。高中階段就學過等差數列和等比數列。先來總結一下他們的通項公式和求和公式及性質。
-
等差數列與等比數列判定,利用數列基本性質,高考重點考題
數列做為我們高中數學一塊非常重要的內容,並且數列的內容常常是利用各種公式的變換來求解數列的得數或是判定數列的性質,數列的考察往往比較的綜合,並且也有一定的難度,數列常常還可以作為載體,與函數解析式結合在一起進行考察,所以這也成了我們高考考題中的大熱題目,因為通過一道題便可以考察很多的數學知識點
-
高中數學數列通項公式,看了老師教的累乘法,學生直呼太簡單了
前面的文章已經詳細講解了累加法求解數列的通項公式,本文講解另外一種求解數列通項公式的最基本的方法-累乘法,也稱為逐商疊乘法。等比數列的通項公式便是用該方法推導得出的。一、累乘法的基本方法(1)適用條件:當題目中給出的兩項的關係式為a(n+1)=f(n)an,或a(n+1)/an=f(n),或者可以化為這種形式的時候,即可採用累乘法求解通項公式。這種形式最簡單就是f(n)為常數,即等比數列;此外f(n)也可以是分式、冪函數等形式。
-
吳國平:學會運用數學思想攻克等比數列相關知識內容
昨天我們講了等差數列及其前n項和的相關知識內容,那麼今天我們就繼續講解數列另一塊重要知識內容,也就是等比數列及其前n項的和。等比數列可以說是數列的核心內容,自然也是高考必考的知識點之一。在高考數學中,跟等比數列相關的主要考點有:等比數列的基本運算與通項公式;等比數列的性質;等比數列的前n項和;等比數列的綜合應用等等。