初三數學,怎麼求拋物線上動點運動的最短路徑?這題很多同學失分

2021-01-21 陳老師初中數理化

點擊右上角關注「陳老師初中數理化」分享學習經驗,一起暢遊快樂的學習生活。

在拋物線上求解動點構成的線段和的最小值是中考數學的常考題型,本文就例題詳細解析這類題型的解題思路,希望能給初三學生的期末考試複習帶來幫助。

例題

如圖,拋物線y=1/2x^2-4x+4與y軸交於點A,B是OA的中點,一個動點G從點B出發,先經過x軸上的點M,再經過拋物線對稱軸上的點N,然後返回到點A,如果動點G走過的路程最短,請找出點M,N的位置,並求最短路程。

解題過程:

設點A關於拋物線對稱軸的對稱點為A',點B關於x軸的對稱點為B'

根據題目中的條件:拋物線y=1/2x^2-4x+4,則點A的坐標為(0,4),拋物線的對稱軸為x=4;

根據題目中的條件和結論:點A的坐標(0,4),B是OA的中點,則點B的坐標為(0,2);

根據結論:點A的坐標(0,4),點A、A'關於拋物線對稱軸x=4對稱,則點A'的坐標為(8,4);

根據結論:點B的坐標(0,2),點B、B'關於x軸對稱,則點B'的坐標為(0,-2);

連接B'M、A'N

根據軸對稱性質和題目中的條件:點A、A'關於拋物線對稱軸x=4對稱,點B、B'關於x軸對稱,則AN=A'N,BM=B'M;

根據題目中的條件和結論:動點G走過的路程=BM+MN+AN,AN=A'N,BM=B'M,則動點G走過的路程=B'M+MN+A'N;

所以,當點B'、M、N、A四點在一條直線上時,動點G走過的路程最短,最短路程=A'B';

設直線A'B'的解析式為y=kx+b

根據題目中的條件和結論:點A'的坐標(8,4),點B'的坐標(0,-2),直線A'B'的解析式為y=kx+b,則k=3/4,b=-2;

所以,直線A'B'的解析式為y=3/4x-2;

根據結論:直線A'B'的解析式為y=3/4x-2,則當y=0時,x=8/3,當x=4時,y=1,即點M的坐標為(8/3,0),點N的坐標為(4,1);

根據結論:點A的坐標(0,4),點A'的坐標(8,4),點B'的坐標(0,-2),則AA'=8,AB'=6;

根據勾股定理和結論:AA'=8,AB'=6,A'B'^2=AA'^2+AB'^2,則A'B'=10;

所以,動點G走過的路程最短為10,此時點M的坐標為(8/3,0),點N的坐標為(4,1)。

結語

解決本題的關鍵是利用二次函數圖像和平面直角坐標系的軸對稱性,構造出點A和點B的軸對稱點,利用軸對稱圖形對應線段的等量關係,將部分線段進行等量替換,從而判斷出四點一線時取到線段長度和的最值,再設定一次函數的解析式,利用特殊點坐標代入求解,就可以輕鬆求得題目需要的值。

相關焦點

  • 初三數學:怎麼求拋物線上動點構成的面積最值?掌握這方法很管用...
    在二次函數的圖像上求解構成面積最大值的動點問題是數學中考的常考題型,本文就例題詳細解析這類題型的解題思路,希望能給初三學生的數學複習帶來幫助。例題如圖,拋物線y=ax^2+bx+c(a>0,c<0)交x軸於點A,B,交y軸於點C,設過A,B,C三點的圓與y軸的另一個交點為D,已知點A,B,C的坐標分別為(-2,0),(8,0),(0,-4)。
  • 初三數學期末考試題:怎麼求拋物線上動點的運動軌跡?這方法管用
    在二次函數圖像上求解動點的運動軌跡、構成幾何圖形的周長是數學中考的重要題型,本文就例題詳細解析這類題型的解題思路,希望能給初三學生的數學學習提供幫助。(1)求二次函數的解析式;(2)直線l繞點A以AB為起始位置順時針旋轉到AC位置結束,l與直線BC交於點D,P是AD的中點,求點P的運動路程;(3)過點D作DE⊥x軸於點E,作DF⊥AC所在直線於點F,連接PE、PF,在l的運動過程中,∠EPF的大小是否改變?
  • 中考數學壓軸題第11講,拋物線上的動點形成的直角三角形解題技巧
    中考進入倒計時,對於想在數學成績上取得領先優勢的初三小夥伴,中考數學中的壓軸題無疑成為橫在我們面前的最大障礙。如何突破呢?一是要有信心,著名的數學教育大師波利亞說:「認為解題純粹是一種智能活動是錯誤的,決心和情緒所起的作用很重要」;二是掌握一些常考題型的解題技巧。
  • 初三數學:怎麼求函數圖像上的動點運動軌跡?掌握這方法快速求解
    求解反比例函數的動點問題是數學中考的常考題型,本文就例題詳細解析這類題型的解題方法,希望能給初三學生的數學複習帶來幫助。例題如圖,在反比例函數y=-2/x的圖像上有一動點A,連接AO並延長交圖像的另一支於點B,在第一象限內有一點C,滿足AC=BC,當點A運動時,點C始終在函數y=k/x的圖像上運動,若tan∠CAB=2,求k的值。
  • 初三數學:求線段長的最值有點難,原來要這樣判斷動點的運動軌跡
    利用幾何圖形的性質求線段長的最值是數學中考的常考題型,本文就例題詳細解析這類題型的解題方法,希望能給初三學生的數學複習帶來幫助。例題如圖,在矩形ABCD中,AB=4,AD=2,E為AB的中點,F為EC上一動點,P為DF的中點,連接PB,求PB的最小值。
  • 初三數學:動點的運動軌跡不會求?學會構造全等三角形其實很簡單
    求動點的運動軌跡是數學中考的常考題型,本文就例題詳細解析這類題型的解題思路,希望能給初三學生的數學複習帶來幫助。例題如圖,已知在△ABC中,∠C=90°,∠A=30°,BC=1,動點D在邊AC上,若以BD為邊作等邊三角形BDE(點E,A在BD的同側),則在點D從點A移動至點C的過程中,求點E經過的路線長。
  • 與動點運動軌跡有關的路徑長問題的解題剖析
    歡迎來到百家號「米粉老師說數學」,初中幾何壓軸題型當中,點的運動路徑問題估計是最後一個專題,初三下學完《圓》章節之後,數學題中就會出現這些題型。點的運動軌跡問題,顧名思義,指的是求動點在自身運動或隨著圖形運動的路程,由於點的運動位置不確定,要刻畫並求出它的運動路徑,是解決這類題型的一大難點,今天,我們就如何確定動點的運動路線特點及求解方法做出交流與探討,與大家一起分享。
  • 解析歷年中考數學壓軸題,尋找2019年中考動點軌跡問題的解題良方
    拿初中數學中動點的軌跡問題來說,它不能是拋物線型,也不可能是雙曲線型,更不可能是奇形怪狀;因為若是這些情形,我們初中生是無法求出其路徑長的。所以我們就可以明確初中數學中的軌跡問題只有兩種情況:線段和圓弧。下面就以原文中的兩道例題來闡明動點的軌跡問題的解題策略。
  • 初三數學:求動點的運動路徑長有點難?學會這樣利用條件快速求解
    利用相似三角形的性質判斷動點的運動路徑是數學中考的常考題型,本文就例題詳解解析這類題型的解題方法,希望能給初三學生的數學複習帶來幫助。例題如圖,AB為⊙O的直徑,AB=4,C為半圓AB的中點,P為弧AC上的一動點,延長BP至點Q,使BP*BQ=AB^2,若點P由點A運動到點C,求點Q的運動路徑長。
  • 初中數學中考難點:九年級數學上冊圓及幾何動點最值問題考點解讀
    只為中考數學高分服務,不錄製競賽題和只適合一個題的方法。圓是平面幾何的重點,這部分是初中數學的核心內容,是中考的重點也是難點。「圓」是幾何題的重要考點,但是也是所有幾何中最複雜的。第32課藉助規則圖形(扇形、三角形、四邊形)面積及割補法求不規則圖形面積,遼寧、四川省中考題講解,.第33課中考數學平面幾何圓的壓軸題:通過等面積轉移研究不規則圖形等面積.第34課求圓錐側面上的兩點之間的最短距離問題,藉助圓錐展開圖和兩點之間線段最短去解決.第35課運用扇形(圓錐的側面積)知識解決實際問題,湖北、安徽省中考數學模擬題講解.
  • 九年級數學,動點路徑長之彎曲路徑,定線定角模型的應用
    動點路徑長問題一般有直路徑、彎曲路徑和來迴路徑,直路徑常用知識點有中位線、平行四邊形等,彎曲路徑一般能與隱形圓模型相結合,比如定點+定長、定線+定角,來迴路徑的顯著特點為起點位置和終點位置是同一個點。本篇主要介紹定線定角模型在動點路徑長問題中的應用。
  • 「三步驟」法分析拋物線中的動點及存在性中考壓軸題
    中考真題:如圖,在平面直角坐標系xOy中,△ABC的兩個頂點A、B在x軸上,頂點C在y軸的負半軸上,已知|OA|:|OB| = 1:5 , |OB|=|OC|, △ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0), 過A、B、C三點.
  • 初三數學培優題,老師分享:動點運動軌跡的判定和計算弧長的方法
    關於弧長的計算是初三數學的重要知識點,也是數學中考的重要題型,本文就例題詳細解析這類題型的解題思路,希望能給初三學生的數學學習帶來幫助。例題如圖,邊長為√2的正方形ABCD的頂點A,B在一個半徑為√2的圓上,頂點C,D在圓內,將正方形ABCD沿圓的內壁逆時針方向作無滑動的滾動,當點C第一次落在圓上時,求點C運動的路徑長。
  • 關於初三一輪複習中求兩條線段和的最小值問題
    在中考數學中,總會出現求兩條線段和的最小值問題。下面總結歸納了三種模型,可以輕鬆秒殺此類型題目。【將軍飲馬模型】形如求PA+PB的最小值模型條件:點A、B為定點,點P為某條直線或線段上的一個動點,簡稱「」兩定一動」秒殺技巧:做任一定點關於動點所在直線的對稱點,將同側定點轉化為異側定點後根據兩點之間線段最短連線即可。
  • 昆明近10年中考數學壓軸題,難度變化不大,這類題十年六考
    縱觀昆明近10年的中考數學壓軸題,不難發現這類題是考試熱點,十年六考。2010年昆明中考數學共25道題,最後一題考查二次函數綜合題。第1問已知拋物線上三個點的坐標,設成一般式,用待定係數法即可求解。難度較小,絕大多數考生都能會做。第2問是二次函數與圓的綜合題,這問的難點主要體現在兩個方面:一方面根據題意畫出圖形;另外一方面需要分情況討論。
  • 初三數學期末考試題,壓軸題又是架橋選址問題,很重要!
    期末考試要來了,對於初三畢業生來說,其實中考也並不遙遠。所以壓軸題就撲面而來了。現在是初三上學期,其實不少學校已經基本把初三的全部內容都上完了,剩下半學期基本就是複習衝刺了。3,圖形的相似(平行線分線段成比例定理,相似三角形的性質與判定,位似圖形。)4,反比例函數(概述,圖像性質,反比例函數的應用),通常會考一道綜合大題,本套試卷第22題。
  • 中考數學壓軸題,幾何圖形上的動點問題
    提到中考數學壓軸題,估計很多人都會認為必考二次函數綜合題。其實不然,因為幾何圖形上的動點問題也是常考的題型之一。下面就分享幾道往年的中考壓軸題,這些題特殊幾何圖形上的動點問題。2010年廣東省考以矩形為背景的動點問題。
  • 一道題幫你分析中考數學——幾何動點中的最值問題
    所以,不少考生非常頭疼,最值問題最是崩潰!其實,學習最值問題時,一定要先弄懂最值問題的基本原理。千變萬化的題目一直都離不開三個基本原理。原理一、兩點之間線段最短!原理二、垂線段最短!原理三、函數在取值範圍中的最大最小值!下面,以一道幾何題目分析這幾個原理!例、某數學興趣小組對線段上的動點問題進行探究,已知AB=8.
  • 初三數學期末總複習卷,從特殊四邊形到二次函數(附手寫答案)
    期末考試漸行漸近,今天推送一套初三數學期末考試綜合複習卷。這是北師大數學教材版本的綜合練習卷,內容包括初三上學期的特殊的平行四邊形,一元二次方程,概率的進一步認識,圖形的相似,投影與視圖,反比例函數以及初三下學期的三角函數和二次函數。
  • 初中數學壓軸題如何突破?這4類題要重視,老師總結了解題技巧
    在每次的初中數學考試中,壓軸題無疑是大多數小夥伴無底氣的一種題型。面對即將到來的期末考試,九年級學生如何突破初中數學壓軸題?根據我多年的教學經驗,這四類題的解題技巧必須掌握好。這題為二次函數綜合題,考查的知識點較多,難度大。