控制溶液態聚合物聚集體的動力學用於實現聚合物半導體的高效n摻雜
作者:
小柯機器人發布時間:2021/1/10 19:41:27
北京大學雷霆團隊通過控制溶液態聚合物聚集體的動力學用於實現聚合物半導體的高效n摻雜。 相關研究成果發表在2021年1月06日出版的《德國應用化學》。
聚合物半導體的摻雜通常受到聚合物和摻雜劑之間相容性問題的限制。儘管人們致力於通過化學改性來提高聚合物半導體的相容性,但n摻雜聚合物半導體的電導率通常低於10S cm 1。
該文中,研究人員開發了一種通過調節共軛聚合物的溶液態聚集體來克服相容性問題。研究人員發現共軛聚合物的溶液態聚集體不僅隨溶劑和溫度而變化,而且隨溶液老化時間而變化。調節溶液態聚合物聚集體可以直接影響其固態微觀結構和與摻雜劑的相容性。結果表明,同時獲得了高摻雜效率和高載流子遷移率。研究了聚合物聚集體的動力學行為後,n型摻雜的P(PzDPP-CT2)電導率可調諧到32.1 S cm 1。
該方法還可用於提高其它具有不同聚集傾向和行為的聚合物體系(如N2200)的摻雜效率。
研究結果揭示了聚合物聚集體的動力學以及對固態微結構和摻雜效率的影響的重要性。
附:英文原文
Title: Efficient n‐Doping of Polymeric Semiconductors through Controlling the Dynamics of Solution‐State Polymer Aggregates
Author: Miao Xiong, Xinwen Yan, Jia-Tong Li, Song Zhang, Zhiqiang Cao, Nathaniel Prine, Yang Lu, Jie-Yu Wang, Xiaodan Gu, Ting Lei
Issue&Volume: 06 January 2021
Abstract: Doping of polymeric semiconductors is often limited by the miscibility issue between polymers and dopants. Although significant efforts have been devoted to enhancing the miscibility via chemical modification, the electrical conductivities of n‐doped polymeric semiconductors are usually below 10 S cm 1 . Here, we report a different approach to overcome the miscibility issue by modulating the solution‐state aggregates of conjugated polymers. We found that the solution‐state aggregates of conjugated polymers not only change with solvent and temperature but also change with solution aging time. Modulating the solution‐state polymer aggregates can directly influence their solid‐state microstructures and miscibility with dopants. As a result, both high doping efficiency and high charge carrier mobility were simultaneously obtained. The n‐doped electrical conductivity of P(PzDPP‐CT2) can be tuned up to 32.1 S cm 1 after exploring the dynamics of the polymer aggregates. This method can also be used to improve the doping efficiency of other polymer systems (e.g. N2200) with different aggregation tendencies and behaviors. Our results highlight the importance of understanding the dynamics of the polymer aggregates and the influence on the solid‐state microstructures and doping efficiency.
DOI: 10.1002/anie.202015216
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202015216